Redox Review Questions

1a. [1 mark]

Define oxidation in terms of oxidation number.

oxidation number increases.	

1b. [2 marks]

Deduce the balanced chemical equation for the redox reaction of copper, Cu(s), with nitrate ions, $NO^{3-}(aq)$, in acid, to produce copper(II) ions, $Cu^{2+}(aq)$, and nitrogen(IV) oxide, $NO_2(g)$.

2(2)	$Cu \longrightarrow Cu^{2+} + 2e^{-}$ $H^{1} = + N03 \longrightarrow N02 + H20$ $HH^{+} + 2e^{-} + 2N03 \longrightarrow 2N02 + 2H20$	
	$4H_{cog}^{+} + Cu_{(3)}^{+} + 2NO_{3}^{-} \rightarrow Cu_{(4)}^{2} + 2NO_{2} + 2H_{2}O_{(4)}$	2)

1c. [1 mark]

Deduce the oxidizing and reducing agents in this reaction.

Oxidizing agent:

Reducing agent:

ter niver new judget niver blanch and have been blanched by the mental bullet by the been been been been been been been be	a restable
Reducing Agent = Cu	

1d. [3 marks]

A voltaic cell was set up, using the standard hydrogen electrode as a reference electrode and a standard $\mathrm{Cu^{2+}(aq)/Cu(s)}_{electrode}$.

Describe the standard hydrogen electrode including a fully labelled diagram.

PERSONAL FOR A SAME TO SAME A THE RESIDENCE OF THE SAME AS A SAME A SAME AS A SAME A SAME AS A SAME AS A SAME A SAME AS A SAME AS A SAME A SA
H2(9) & 100 KPa, 298K
Hzig) at 100 kfa, 298K
SIBIT SIGNATURE
IM HCP

Define the term standard electrode potential, E^{Θ} .

when connected to a SHE under	The potential of a half-rea	nthon measured
Standard conditions.	standard conditions.	

1f. [2 marks]

Deduce a balanced chemical equation, including state symbols, for the overall reaction which will occur spontaneously when the two half-cells are connected. (as described in Id

	Cy 2+(ag) + H2(g) -> Cu(s) + ZH+	(ag.)
Q AL		0-

1g. [1 mark]

Another voltaic cell was set up, using a $\mathrm{Sn}^{2+}(\mathrm{aq})/\mathrm{Sn}(s)$ half-cell and a $\mathrm{Cu}^{2+}(\mathrm{aq})/\mathrm{Cu}(s)$ half-cell under standard conditions.

Using Table 14 of the Data Booklet, calculate the cell potential, E_{cell}^{Θ} , in V, when the two half-cells are connected.

Sn (0) -> Sn (00) + 2e	+0.14V
Cu2++2e> Cucs)	+ 0.34V
(ag)	+0,48V

Water in a beaker at a pressure of $1.01 imes 10^5~{ m Pa}$ and a temperature of 298 K will not spontaneously
decompose. However, decomposition of water can be induced by means of electrolysis.

1h. [1 mark]

State why dilute sulfuric acid needs to be added in order for the current to flow in the electrolytic cell.

It provides	ions to carry current.
H20 is a	poor/monconductor.

1i. [1 mark]

State why copper electrodes cannot be used in the electrolysis of water. Suggest instead suitable **metallic** electrodes for this electrolysis process.

Cu	will	react.	Bhaphite (carban)
			be used.

1j. [2 marks]

Deduce the half-equations for the reactions occurring at the positive electrode (anode) and the negative electrode (cathode).

Positive electrode (anode):

Negative electrode (cathode):

Positive electrode (anode):
2 H2O (1) +> Oz(g) + 4Htag) + 4e-
Negative electrode (cathode):
Negative electrode (cathode): 2 HzO(0) + Ze -> Hz(g) + 20H(ag)

11. [1 mark]

Deduce the overall cell reaction, including state symbols.

1m. [2 marks]

Draw a fully labelled diagram of the electrolytic cell, showing the positive electrode (anode) and the negative electrode (cathode).

Comment on what is observed at both electrodes.

H20 is	reduced at the cathode,
H20 is	oxidized at the anode,
Bubbles	oxidized at the anode, of Oz and Hz will form,

10. [2 marks]

Two electrolytic cells are connected in series (the same current passes through each cell). One cell for the electrolysis of water produces $100~\text{cm}^3$ of oxygen, measured at 273~K and $1.01\times10^5~\text{Pa}$. The second cell contains molten lead(II) bromide, $PbBr_2$. Determine the mass, in g, of lead produced.

100 cm ³	0,100 L = 4,41 x10 mol 02
1000 cm3/L	22.74/0
	40-02
4,41 x 10 ml	4e-02 × 2e-po2+ x 207,199 Pb mol
William Co.	mol
	= 1.84g Pb

Printed for Champlin Park High School

© International Baccalaureate Organization 2018

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®